Against a feature driven view of \textit{wh}-movement

Hadas Kotek
McGill University

DGfS workshop
Leipzig, March 2015
Interpreting \textit{wh}-in-situ

English multiple \textit{wh}-questions involve overt movement of just one \textit{wh}-phrase.

(1) \textit{Who} did Mary introduce \underline{____} to \underline{whom}?

How are in-situ \textit{wh}-phrases interpreted?
Two traditional approaches to *wh*-in-situ

The covert movement approach:
Wh-phrases **must move to C** by LF for interpretability (Karttunen, 1977, among others).

\[(2) \quad \text{LF: } \textit{Who whom C did Mary introduce }\underline{\text{_____}} \text{ to } \underline{\text{_____}} \text{?}\]

The in-situ approach:
Wh-phrases **are interpreted in their base-positions**, without movement (Hamblin, 1973; Rooth, 1985, 1992, among others).

\[(3) \quad \text{LF: } \textit{Who C did Mary introduce }\underline{\text{_____}} \text{ to whom }?\]
Certain quantifiers (interveners) cannot precede *wh*-in-situ.

(4) **Japanese: Intervention effects avoided through scrambling**

 John-nom what-acc read-past-Q
 ‘What did John read?’

b. ?* Dare-mo [boxed: nani-o] yom-ana-katta-no?
 no-one what-acc read-neg-past-Q

c. ✓ [boxed: nani-o] dare-mo ____ yom-ana-katta-no?
 what-acc no-one read-neg-past-Q
 ‘What did no one read?’

Data from Tomioka (2007)
Movement, *Wh*-in-situ, and intervention effects

(5) German: intervention above *wh*-in-situ, rescued by scrambling

a. ✓ *Wer* hat Luise [*wo*] angetroffen?
 who has Luise where met
 ‘Who met Luise where’?
Movement, *Wh*-in-*situ*, and intervention effects

Puzzle: no intervention effects in corresponding English questions.

(7) a. ✓ *Who didn’t _____ meet anyone where?*
 b. ✓ *Who met no one _____ where?*

This is explained by the covert movement approach to *wh*-in-*situ* (Pesetsky, 2000; Beck, 2006; Cable, 2010):

(8) LF: *Who where C _____ met no one _____ ?*
Proposal: English behaves covertly as German does overtly

(9) LF: Who C ____ met where no one ____?

\[\hat{\text{scrambling}} \]

Covert movement happens for interpretability of the \textit{wh}. It is not feature-driven.
1 Experimentally detecting covert movement
2 **Experiment 1:** scrambling-like movement
3 **Experiment 2:** varying the size of movement
4 **Proposal:** covert *wh*-movement is covert scrambling
 - Cannot be accounted for using syntactic features
Experimentally detecting covert movement
Experimentally detecting covert movement

- Hackl et al. (2012) paradigm
- Self-paced reading
- Tests for covert movement using the interaction between
 - Quantifiers in object position
 - Antecedent Contained Deletion (ACD)
Quantifiers in object position

- For formal semantic reasons, *cannot directly combine with the verb*.
- One prominent solution: **Covert Movement (CM)** of the object.
Verb-Phrase ellipsis

(11) John \([\text{likes flying planes}]\). Bill doesn’t \([-\text{_____}]\).

- Missing VP requires **identical pronounced** antecedent VP.
Antecedent Contained Deletion (ACD)

(12) John \(\text{read every book Mary did } \underline{\text{____}}\).

• Missing VP requires **identical pronounced** antecedent VP.
• A VP can never be identical to its antecedent if one is properly contained inside the other!
• The solution: **Covertly move** the object containing the ACD site

(13) John \(\text{read } t_k \ [\text{DP every book Mary did } \underline{\text{____}}]_k\).
The size of the antecedent VP determines the \textbf{minimal} size of movement.

(14) John was willing to read every book \textcolor{red}{Mary} \{ \textcolor{red}{\text{liked}} \} \{ \textcolor{red}{\text{did}} \} \{ \textcolor{red}{\text{was}} \}.
The size of the antecedent VP determines the \textit{minimal} size of movement.

\begin{equation}
\text{(15) John was willing to read every book Mary\{ liked did was \}}.
\end{equation}
The Hackl et al. (2012) paradigm

(16) John was willing to read \{the every\} book Mary \{liked did was\}.

- Assumptions about online processing:
 - L → R: parser encounters the/every before Verb/Aux.
 - *The* does not require movement.
 → Movement only if Aux is reached
 - *Every* is moved when encountered
 → *Small* movement step: above read

Prediction Upstream *every* facilitates resolution *small ellipsis* (*did*)

![Mean Residual Reading Times](chart.png)
Online processing of multiple *wh*-questions
Predictions for real-time processing

(17) Which boy was willing to read which book Mary \{ \text{did} \} \{ \text{was} \}

The covert movement approach:
In-situ \textit{wh}-phrases move to C by LF for interpretation.

(18) Which boy \textit{which book} \ldots C \underline{____} \underline{____} was willing to read \underline{____} \underline{____}?

\begin{itemize}
 \item Antecedent containment preemptively undone, small ellipsis (\textit{did}) and large ellipsis (\textit{was}) \underline{facilitated}.
\end{itemize}
Predictions for real-time processing

(19) *Which* boy was willing to read *which* book Mary \{ *did* \}

The in-situ approach:
In-situ *wh*-phrases are interpreted in their base-positions

(20) *Which* boy *C* was willing to read *which* book ... ?

🔗 Antecedent containment not preemptively undone, small ellipsis (*did*) and large ellipsis (*was*) **not facilitated**.
(21) *Which* boy was willing to read \{ *which* every \} book Mary \{ did was \}

• *Every* conditions as in Hackl et al. (2012), provides baseline:
 • small ellipsis facilitated.
 • large ellipsis not facilitated.

• *Which* conditions should pattern with each other:
 • small ellipsis and large ellipsis facilitated (covert movement approach), or
 • small ellipsis and large ellipsis not facilitated (in-situ approach)
Experiment 1: Residual reading times

(22) Which boy was willing to read \{ which \}
 every \} book Mary \{ did \}
 was \}.

- Main effect of ellipsis size (small: did < large: was)
- Every: replicating Hackl et al. (2012)
• *Small ellipsis* (did) is faster than *large ellipsis* (was).

No difference between *every* and *which*.

• Not predicted by either traditional approach to *wh*-in-situ.

• Paradigm sensitive enough to detect differences between determiners: *Every* and *which* both facilitate more ACD than the non-quantificational determiner *the*.
Covert wh-movement behaves like scrambling, not like unbounded movement.
Previous approaches: two places where *wh*-phrases can be interpreted.
In contrast, quantifiers can be interpreted in a variety of positions:
A *wh*-phrase can be interpreted at any position with propositional type at LF (same as quantifiers, e.g. *every*).
In-situ *whs* move locally immediately upon being integrated into the structure, like conventional quantifiers e.g. *every*.

Small movement step is sufficient.
Following this movement step, the *wh can* but *need not* move any further:

It can be interpreted in its landing site using in situ computation (e.g. the projection of focus alternatives to C), without movement.
If in-situ composition cannot be used in a certain region, expect *wh*-movement above the region of uninterpretability.
Intervention effects in online sentence processing
Intervention effects: a very quick guide

• Recall: two strategies for the interpretation of *wh*-in-situ:
 • Covert movement
 • In-situ interpretation

• Beck (2006): In-situ strategy is sensitive to intervention effects.

(23) The intervention configuration:
 a. $^* [_{CP} C ... \textit{intervener} ... wh]$
 b. $^{\checkmark} [_{CP} C ... wh \textit{intervener} ... t]$

• Interveners: elements such as *only, also*, negation,...
Also is an intervener. We can place it at different heights in Exp1 items:

(24) Which boy was willing to also read \(\overrightarrow{\text{which}} \) book Mary \(\overrightarrow{\text{did was}} \) every

(25) Which boy was also willing to read \(\overrightarrow{\text{which}} \) book Mary \(\overrightarrow{\text{did was}} \) every

Expect:

- *Wh*-movement above also \(\rightarrow \) more movement with high intervener.
- *Every* (and other quantifiers) not affected.

Facilitation of ACD resolution in the entire domain of movement.
Experiment 2: Predictions

Also is an intervener. We can place it at different heights in Exp1 items:

(24) *Which* boy was willing to **also** read *which* book Mary {did was}

(25) *Which* boy was **also** willing to read *which* book Mary {did was}

Low also (24) requires **small** wh-movement.

- *Which* and *every*: same effects as in Experiment 1 (no effect of *also*).

High also (25) forces **large** wh-movement.

- *Which*: Effect of *also*
- *Every*: No effect of *also*.
Experiment 2: Residual reading times

\[\begin{array}{c}
\text{Every: high} & \text{Every: low} \\
\text{Which: high} & \text{Which: low}
\end{array} \]

\[\begin{array}{c}
did & was \\
did & was
\end{array} \]

\text{every: RRTs three words after Aux} \quad \text{which: RRTs three words after Aux}

- \text{Every: Main effect of ellipsis size (small: did < large: was)}
 \text{No effect of also}

- \text{Which: Main effect of ellipsis size (small: did < large: was)}
 \text{Main effect of also (high also < low also)}
Experiment 2: Summary

• The position of *also* affects *which* but not *every*.
 • High *also* forces long-distance *wh*-movement, resulting an increased domain of ACD resolution facilitation effects.
 • *Every* is not affected by the manipulation.

• **Unpredicted** by the covert movement approach and by the in-situ approach to *wh*-in-situ.

 Explained if *wh*-movement behaves as scrambling.
Conclusion
Take-home message

1 Two traditional approaches to \textit{wh}-in-situ in the literature:
 - Covert movement approach: movement to C.
 - In-situ approach: no movement at all.

2 \textbf{Both} approaches are \textit{partially correct}.
 \begin{itemize}
 \item Covert \textit{wh}-movement in English is \textit{covert scrambling}.
 \item Covert \textit{wh}-movement is not feature driven.
 \end{itemize}
Thank you! Questions?

I would like to thank Martin Hackl, David Pesetsky, Danny Fox, Irene Heim, Micha Breakstone, Michael Yoshitaka Erlewine, Leo Rosenstein, Yasutada Sudo, audiences at MIT and McGill University, NSF Dissertation Improvement Grant #1251717, and the Mellon Foundation.

