
Using Turktools

Hadas Kotek
(based onmaterials created in collaboration with Michael Y. Erlewine)

Experimental semantics and pragmatics
NYU, October 2017

In these slides

§1 Why experimentation? Basic considerations.

§2 Turktools basics: Terminology

§3 The relationship between templates and Turk item files

§4 Skeletons, templates, and the Lister

(Wednesday: uploading an experiment to Amazon’s Mechanical Turk)

2/26

Why/when AMT?

Q: When would we prefer to gather data from dozens of potentially very
noisy participants in a potentially very noisy environment than from
a handful of trusted and cooperative consultants in our office?

A1: Representativeness across speakers — but why?
• Observer biases
• Consultants are Non-representative sample

A2: Representativeness across items
• Noise

• The experimental task involves engaging noisy cognitive systems
(memory, etc.)

• The phenomenon of interest itself is noisy

☞ Experimentation: not at all costs! Design matters.

3/26

Why/when AMT?

Q: When would we prefer to gather data from dozens of potentially very
noisy participants in a potentially very noisy environment than from
a handful of trusted and cooperative consultants in our office?

A1: Representativeness across speakers — but why?
• Observer biases
• Consultants are Non-representative sample

A2: Representativeness across items
• Noise

• The experimental task involves engaging noisy cognitive systems
(memory, etc.)

• The phenomenon of interest itself is noisy

☞ Experimentation: not at all costs! Design matters.

3/26

Why/when AMT?

Q: When would we prefer to gather data from dozens of potentially very
noisy participants in a potentially very noisy environment than from
a handful of trusted and cooperative consultants in our office?

A1: Representativeness across speakers — but why?
• Observer biases
• Consultants are Non-representative sample

A2: Representativeness across items
• Noise

• The experimental task involves engaging noisy cognitive systems
(memory, etc.)

• The phenomenon of interest itself is noisy

☞ Experimentation: not at all costs! Design matters.

3/26

Why/when AMT?

Q: When would we prefer to gather data from dozens of potentially very
noisy participants in a potentially very noisy environment than from
a handful of trusted and cooperative consultants in our office?

A1: Representativeness across speakers — but why?
• Observer biases
• Consultants are Non-representative sample

A2: Representativeness across items
• Noise

• The experimental task involves engaging noisy cognitive systems
(memory, etc.)

• The phenomenon of interest itself is noisy

☞ Experimentation: not at all costs! Design matters.

3/26

Simple designs: 2×1

• In case we are simply interested in the effect of just one
feature/property on a judgment.

• Effect of animacy on grammaticality of English ‘make’-causative:

(1) a. The coachmade the ball bounce on the floor.

b. The coachmade the gymnast bounce on the floor.

Life is rarely this simple, but it’s nice when it is…

4/26

Simple designs: 2×2

More realistically, you will want to aim for a 2×2 design.

• Effect of animacy of the causee in two kinds of causative
constructions: Animacy× Type.

• Animate vs. inanimate
• Lexical causative vs. ‘make’ causative

(2) a. That’s the ball that the coach bounced on the floor.

b. That’s the gymnast that the coach bounced on the floor.

c. That’s the ball that the coachmade bounce on the floor.

d. That’s the gymnast that the coachmade bounce on the floor

(from Kotek & Erlewine, ms, “Blocking effects in English causatives”)

5/26

Simple designs: 2×2

(2) a. That’s the ball that the coach bounced on the floor.

b. That’s the gymnast that the coach bounced on the floor.

c. That’s the ball that the coachmade bounce on the floor.

d. That’s the gymnast that the coachmade bounce on the floor

• Wewant each participant to only rate one of these conditions for a
given item set. (Why?)

• Latin square design: cycles through our items to create lists.
• List 1: (1a), (2b), (3c), (4d), (5a), …
• List 2: (1b), (2c), (3d), (4a), (5b), …
• List 3: (1c), (2d), (3a), (4b), (5c), …
• List 4: (1d), (2a), (3b), (4c), (5d), …

(for 4 conditions, we need amultiple of 4 lists,
to collect the same number of observations for
each item)

6/26

Simple designs: 2×2

(2) a. That’s the ball that the coach bounced on the floor.

b. That’s the gymnast that the coach bounced on the floor.

c. That’s the ball that the coachmade bounce on the floor.

d. That’s the gymnast that the coachmade bounce on the floor

• Wewant each participant to only rate one of these conditions for a
given item set. (Why?)

• Latin square design: cycles through our items to create lists.
• List 1: (1a), (2b), (3c), (4d), (5a), …
• List 2: (1b), (2c), (3d), (4a), (5b), …
• List 3: (1c), (2d), (3a), (4b), (5c), …
• List 4: (1d), (2a), (3b), (4c), (5d), …

(for 4 conditions, we need amultiple of 4 lists,
to collect the same number of observations for
each item)

6/26

Simple designs: 2×2

More complex designs than a 2×2 should be avoided, as their results can
be hard to interpret.

• In general, you should always know how you’re going to analyze your
data before you begin, and have some predictions for what you
expect to find.*

• We’ll concentrate on a small 5-item experiment this week, though a
‘real’ experiment should probably have more items

• (Ask your friendly instructors about considerations to do with power
andminimal number of items.)(

*But also remember that only rarely will your first pilot actually run
smoothly and showwhat you expect…

)

7/26

Fillers

Normally, at least as many as the targets.

• Distract from the true purpose of the experiment

• Even out skewness in items
• Serve as an exclusion criterion

• Overall accuracy
• “catch items”

8/26

The idea behind turktools:

Separate out the intellectual work of putting together an experiment from
the technical aspects. Allow less experienced linguists to use experiments.

• Intellectual:
• Formulate a research question,
• Operationalize:

• Pick an experimental design,
• Create items.

(This is what you should spendmost of your time on.)
• Technical:

• Create an appropriate HTML template to present your study,
• Randomize your items,
• Create multiple lists to avoid bias due to presentation order,
• Format files to fit the format required by AMT.

(This is where turktools comes in.)

9/26

The idea behind turktools:

Separate out the intellectual work of putting together an experiment from
the technical aspects. Allow less experienced linguists to use experiments.

• Intellectual:
• Formulate a research question,
• Operationalize:

• Pick an experimental design,
• Create items.

(This is what you should spendmost of your time on.)
• Technical:

• Create an appropriate HTML template to present your study,
• Randomize your items,
• Create multiple lists to avoid bias due to presentation order,
• Format files to fit the format required by AMT.

(This is where turktools comes in.)

9/26

The idea behind turktools:

Separate out the intellectual work of putting together an experiment from
the technical aspects. Allow less experienced linguists to use experiments.

• Intellectual:
• Formulate a research question,
• Operationalize:

• Pick an experimental design,
• Create items.

(This is what you should spendmost of your time on.)
• Technical:

• Create an appropriate HTML template to present your study,
• Randomize your items,
• Create multiple lists to avoid bias due to presentation order,
• Format files to fit the format required by AMT.

(This is where turktools comes in.)

9/26

Some terminology

• An item set is a set of sentences/stimuli that vary the factors of
interest in a systematic way, and hold constant everything else.
(Cf: Lexicalization; Independent Variables)

• A condition is a particular setting of all of the factors of interest.
• Individual stimuli within an item set are called items.
• Items are grouped into sections. Normally, “target” and “filler.”

blocking 1 inanimate-make-v
That’s the ball that the coach bounced on the floor.

blocking 1 inanimate-v
That’s the gymnast that the coach bounced on the floor.

blocking 1 animate-make-v
That’s the ball that the coach made bounce on the floor.

blocking 1 animate-v
That’s the gymnast that the coach made bounce on the floor.10/26

Getting set up

This should have already happened:

• Install Python 2.7.x: http://www.python.org/getit/
(choose 2.7.x, not 3.x)

• Download turktools: http://turktools.net

For today:

• Access files at: http://hkotek.com/turk/index.html
• Youmight want to save these files in the same folder you have your
turktools scripts in.

11/26

http://www.python.org/getit/
http://turktools.net
http://hkotek.com/turk/index.html

Your template and items

What people see:

12/26

Your template and items

What you give Turk:

Template file Turk items file
.html .turk.csv

☞ Open up binary-mcgill-TK1-10.html in your browser.
Probably double-clicking on it will work.

• What kind of experimental paradigm is this template for?
• Howmany items is this template file expecting?
• How is it different than what the subject sees?

13/26

Your template and items

What you give Turk:

Template file Turk items file
.html .turk.csv

☞ Open up binary-mcgill-TK1-10.html in your browser.
Probably double-clicking on it will work.

• What kind of experimental paradigm is this template for?
• Howmany items is this template file expecting?
• How is it different than what the subject sees?

13/26

Your template and items

What you give Turk:

Template file Turk items file
.html .turk.csv

☞ Open up binary-sample-items.turk.csv in Excel.
(CSV files are a kind of plain-text spreadsheet.)

• Howmany separate lists does this include?
• Howmany items do these lists have?
• What’s the relationship between list 0 and 1? 2 and 3?

14/26

Your template and items

When you upload a template and item file to Turk, each one of these lists
will be turned into a HIT (“Human Intelligence Task”).

Each string in the row in the Turk items file will be plugged into “fields” in
the template.

list trial_1_1 trial_2_1 · · ·
0 That’s the rabbit

that the magician
made vanish into
thin air.

That’s the boy
that the instruc-
tor made float in
the pool.

· · ·

...
...

...
...

In list #0, the text ${trial_2_1} in the template file will be replaced
with “That’s the boy that the instructor made float in the pool.”

15/26

Your template and items

When you upload a template and item file to Turk, each one of these lists
will be turned into a HIT (“Human Intelligence Task”).

Each string in the row in the Turk items file will be plugged into “fields” in
the template.

list trial_1_1 trial_2_1 · · ·
0 That’s the rabbit

that the magician
made vanish into
thin air.

That’s the boy
that the instruc-
tor made float in
the pool.

· · ·

...
...

...
...

In list #0, the text ${trial_2_1} in the template file will be replaced
with “That’s the boy that the instructor made float in the pool.”

15/26

Experiment types and skeletons

We create templates from “skeleton” files. Think “template recipes.”

Each skeleton corresponds to a different kind of experiment. Let’s open
some skeletons in our browser.

• binary.skeleton.html
• binary-image.skeleton.html
• completion.skeleton.html
• image-choice.skeleton.html
• sentence-choice.skeleton.html
• …

More described in the paper.

Also possible: audio playback.

16/26

Experiment types and skeletons

We create templates from “skeleton” files. Think “template recipes.”

Each skeleton corresponds to a different kind of experiment. Let’s open
some skeletons in our browser.

• binary.skeleton.html
• binary-image.skeleton.html
• completion.skeleton.html
• image-choice.skeleton.html
• sentence-choice.skeleton.html
• …

More described in the paper.

Also possible: audio playback.

16/26

The Lister

The Lister does the following:

• Takes an items file (.txt) as input.
• Create Latin Square lists from the items, so that each participant sees

only one condition per item.

• Randomize the lists andmix the targets and fillers together, following
certain constraints.

• Print the resulting lists into a Turk items file (.turk.csv).

17/26

The Lister input file

☞ Open binary-image-sample-items.txt, which is a Lister input file.

Each item has a header beginning with #. The header includes a section
name, item number, and condition name.

target 1 most
Most of the dots are blue.
http://hkotek.com/turk/most-pics/2C-1.png

...

Each line of the item corresponds to a different field in the template. For
this experiment, each item has two fields: a sentence and a URL of an
image. At least one blank line is required between items.

☞ Howmany sections are there? Howmany items do they have? How
many different conditions are there in each section?

☞ Howmany items will an individual participant be asked to answer?
18/26

The Lister input file

☞ Open binary-image-sample-items.txt, which is a Lister input file.

Each item has a header beginning with #. The header includes a section
name, item number, and condition name.

target 1 most
Most of the dots are blue.
http://hkotek.com/turk/most-pics/2C-1.png

...

Each line of the item corresponds to a different field in the template. For
this experiment, each item has two fields: a sentence and a URL of an
image. At least one blank line is required between items.

☞ Howmany sections are there? Howmany items do they have? How
many different conditions are there in each section?

☞ Howmany items will an individual participant be asked to answer?
18/26

Creating lists for Turk

— →

Lister input lister.py Turk items
.txt .turk.csv

☞ Run lister.py. Enter binary-sample-items.txt and
request a multiple of 2 lists. It will ask you about filler placement
constraints.

It will then print a nice summary of howmany sections, items, conditions,
etc. were found and (hopefully) tell you that the CSV files were
successfully created.

NB: Double the number of lists you request will be created. That’s
because the reverse order of each list is also always included, to
attempt to counter ordering effects.

☞ Howmany items does it say are in each list?
19/26

Skeletons

Skeletons are ‘template recipes’. By default, they consist of three blocks:

• Instructions and consent statement.

• Items block.

• Demographics information.

Skeletons can be edited. E.g.:

• Natural/Unnatural replaced with True/False

• Update consent statement

• Ask different demographics info, remove this block, move it up.

The items block is represented by one dummy item. The templater will
replace this with as many items as your experiment has.

20/26

Skeletons

Skeletons are ‘template recipes’. By default, they consist of three blocks:

• Instructions and consent statement.

• Items block.

• Demographics information.

Skeletons can be edited. E.g.:

• Natural/Unnatural replaced with True/False

• Update consent statement

• Ask different demographics info, remove this block, move it up.

The items block is represented by one dummy item. The templater will
replace this with as many items as your experiment has.

20/26

Skeletons

Skeletons are ‘template recipes’. By default, they consist of three blocks:

• Instructions and consent statement.

• Items block.

• Demographics information.

Skeletons can be edited. E.g.:

• Natural/Unnatural replaced with True/False

• Update consent statement

• Ask different demographics info, remove this block, move it up.

The items block is represented by one dummy item. The templater will
replace this with as many items as your experiment has.

20/26

Skeletons

Open the skeleton completion.skeleton.html. Howmany fields
does each item have?

☞ Each item in your items file should have at least as many fields as the
skeleton expects.

• Each field corresponds to a new line in your items file.
• Any additional fields are “hidden fields” — they will not be shown to
participants, but will still be in your results file.

• This is a useful way to indicate expected correct answers to fillers.
• It’s possible to have hidden fields for just some but not all items (e.g.,
no expected correct answer for targets).

21/26

templater.py

We need a template of the right length. We have a tool to create templates
of arbitrary length from skeletons:

— →

template skeleton templater.py template

☞ Run templater.py. Create a template based on binary-
mcgill.skeleton.html for 10 trials. Pick a code, any code.

Open the resulting template file and verify that it’s built for 10 trials.

22/26

Putting it together

☞ Use simulator.py to put your new template and our new Turk
items file together. Make sure the resulting simulation looks good.

+ — →

template Turk items simulator.py simulation

Now you have a binary-nyu-mcgill-10.simulation.html file
in your folder. Look at it in your browser. Note that Turk will add a submit
button, so our template doesn’t need to include that.

At this point you would be ready to upload your template and Turk items
(.turk.csv) file to Turk!

23/26

Turk technical workflow overview

aka “Turkflow”

→ — →

(raw) (RegEx) items file lister.py Turk lists
.txt .turk.csv

— →

template
skeleton

templater.py template

simulationsimulator.py

Turk!

24/26

Exercise: Run your own study!

• Create an items file. Make sure it’s formatted correctly. (Youmight
have already done this before class.)

• Create MTurk-compatible item lists with lister.py.
• Customize the skeleton of your choice.

• Edit the instructions and consent statement.
• Make any changes to the items block and demographics block that you
would like.

• Save your edited skeleton in the same folder as turktools.

• Create a template from your skeleton with the appropriate number of
items with templater.py.

• Simulate with simplator.py! Win all the prizes!

• (On Wednesday: upload to MTurk.)

25/26

Completions exercise (time permitting)

• Open example3-items.txt. Here are a few sentences I wrote for
a completion study, where participants will choose between two
quantifiers in a sentence.

• Targets will have two conditions, did andwas, based on the verb at the
end of the sentence.

• Open completion.skeleton.html. Each trial must be split up
into four strings:

• field 1: text before the gap
• field 2: text after the gap
• field 3: gap option one
• field 4: gap option two

• Prepare these sentences for the Lister.
Hint: regular expressions will save you time!

• Create Turk items with lister.py.
• Create a template from completion.skeleton.htmlwith the

appropriate number of items with templater.py.
• Simulate! Win all the prizes! 26/26

	why AMT
	Turktools terminology
	Templates
	Items files

