Review: Compositional semantics (continued)

Updates:

Website: http://people.linguistics.mcgill.ca/~michael.erlewine/focus-wh/

Office hours (room 215): mitcho Fridays 1–3pm; Hadas Mondays 3–5pm

Today: More of the semantic system, quantifiers

1 The basic system

The principle of compositionality: the meaning of a complex expression depends upon its constituent parts and the way they are combined.

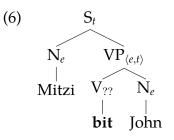
- Basic types:
 - e for individuals, in D_e
 - *t* for truth values, in $\{0, 1\}$
- **Definition:** If σ and τ are types, then $\langle \sigma, \tau \rangle$ is a type. An object of type $\langle \sigma, \tau \rangle$ is a function which takes an argument of type σ and returns an object of type τ

Lambda notation: " λx . *<something involving x>*" takes an argument, *x*, and returns *<something involving x>*.

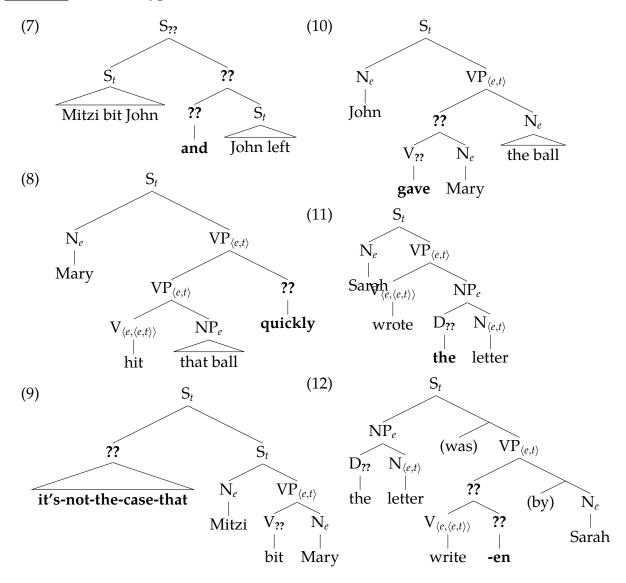
Exercise: Give types and lexical entries for:

- (1) Mitzi
- (2) *purrs*
- (3) *bit-John* (as one verb)

Definition: Functional Application (FA)

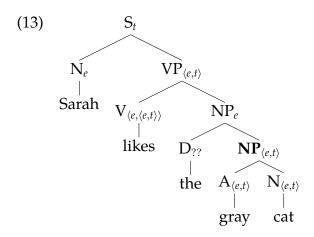

If α has β and γ as its daughter constituents and $\llbracket \beta \rrbracket \in D_{\sigma}$ and $\llbracket \gamma \rrbracket \in D_{\langle \sigma, \tau \rangle}$, then $\llbracket \alpha \rrbracket = \llbracket \gamma \rrbracket (\llbracket \beta \rrbracket)$

Exercise: Draw a tree, give types at each node, and give the truth conditions:


- (4) Mitzi purrs
- (5) Mitzi bit-John

2 Working backwards

Let's decompose "bit John":



Exercise: Fill in the type and denotation for **bolded** nodes.

3 Modification

So far we've used the rule of *Functional Application*. In some cases, another rule is necessary:

Definition: Predicate Modification

If α is a branching node that has β and γ as its daughter constituents and $[\![\beta]\!]$ and $[\![\gamma]\!]$ are both $\in D_{\langle e,t \rangle}$, then $[\![\alpha]\!] = \lambda x . [\![\beta]\!](x) = [\![\gamma]\!](x) = 1$

Exercise: Compute the meaning of (13).

4 Sets and functions

On Monday we briefly talked about how sets can be thought of as functions, and vice versa.

A set is a collection of things (of the same type). The most common case will be *sets of individuals*.

- (14) a. $\llbracket \operatorname{cat} \rrbracket = \lambda x_e x$ is a cat
 - b. \llbracket human $\rrbracket = \lambda x_e x$ is human
 - c. $\llbracket walks \rrbracket = \lambda x_e x walks$
- (15) a. {Mitzi, Tonya, Spike, Tama,...}
 - b. {John, Mary, Bill, Sue, ...}
 - c. {Mitzi, T-Rex, John, Mary, Godzila,...}

The objects in the set *cat* are (all) the individuals that the function $\lambda x_e x$ is a cat is true of.

5 The denotation of quantifiers

We can think of quantifiers as relations between sets of individuals.

(16) *Some* cats purr. \sim The set of cats and the set of purr-ers have some individuals in common. \sim Some individual(s) is both a cat and a purr-er. $[some]] = \lambda f_{\langle e,t \rangle} \cdot [\lambda g_{\langle e,t \rangle}.$ there is some $x \in D_e$ such that f(x) = 1 and g(x) = 1]

Exercise: Draw tree and compute the truth conditions for "Some cats purr."

- (17) *Two* cats purr. \sim The set of cats and the set of purr-ers have two individuals in common. \sim Two individuals are both cats and purr-ers. $[[two]] = \lambda f_{\langle e,t \rangle} \cdot [\lambda g_{\langle e,t \rangle}.$ there are two $x \in D_e$ such that f(x) = 1 and g(x) = 1]
- (18) *Every* human is mortal. \sim The set of humans is contained in the set of mortals \sim For every individual, if they are human, then they are mortal. $[every] = \lambda f_{\langle e,t \rangle} \cdot [\lambda g_{\langle e,t \rangle}]$ for all $x \in D_e$ such that f(x) = 1, g(x) = 1]
- (19) *No* human flies.
 - → The set of humans does not overlap with the set of flyers. → For every individual, if they are human, then they do not fly. $[no] = \lambda f_{\langle e,t \rangle} \cdot [\lambda g_{\langle e,t \rangle}]$. there is no $x \in D_e$ such that f(x) = 1 and g(x) = 1

For next time

Heim & Kratzer pp 178–198 (most of chapter 7)

(Readings at http://bit.ly/focus-wh-readings — ask for password)

Problem set will be on website Wednesday evening. **Due Monday before class.** Email your problem set to both of us: michael.erlewine@mcgill.ca, hadas.kotek@mcgill.ca