Review: Compositional semantics

Today: Some syntactic and semantic assumptions and background.

1 The principle of compositionality

The goal of the semantics we develop here: describe the meanings of sentences. The meanings of sentences are described in terms of their *truth conditions*: the situations under which the sentence is true and the situations under which the sentence is false.

The principle of compositionality: the meaning of a complex expression depends upon its constituent parts and the way they are combined.

 \rightarrow Linguistic expressions contribute to the meaning of a sentence in systematic and predictable ways.

- (1) The cat chased the rat.
- (2) The grey cat chased the rat.
- (3) The cat chased the dog.
- (4) The cat licked the rat.
- (5) A cat chased the rat.

2 A model theoretic approach to sentence meanings

Below is a simple model for a (small, cat-centric) fragment of the English language.

Syntax

Vocabulary (lexicon)	Phrase structure rules
$N \rightarrow John$, Mary, Tonia	$S \rightarrow N \ VP$
$V_i \rightarrow$ smokes, purrs, is hungry	$\mathrm{VP} ightarrow \mathrm{V}_i$
$V_{tr} \rightarrow hugs$	$\mathrm{VP} ightarrow \mathrm{V}_{tr} \mathrm{N}$
$Neg \rightarrow not$	$S \rightarrow S$ Conj S
$Conj \rightarrow and, or$	$S \rightarrow Neg S$

Semantics

Semantic values of the basic expressions:

$$\begin{bmatrix} \operatorname{John} \mapsto 1 \\ \operatorname{Mary} \mapsto 1 \\ \operatorname{Mitzi} \mapsto 0 \end{bmatrix} = \begin{bmatrix} \operatorname{John} & \oplus & 1 \\ \operatorname{Mary} & \mapsto & 1 \\ \operatorname{Mitzi} & \mapsto & 0 \\ \operatorname{Mary} & \mapsto & 0 \\ \operatorname{Mary} & \mapsto & 0 \\ \operatorname{Mitzi} & \mapsto & 1 \end{bmatrix} = \begin{bmatrix} \operatorname{Iohn} & \oplus & 0 \\ \operatorname{Mary} & \mapsto & 0 \\ \operatorname{Mary} & \mapsto & 1 \\ \operatorname{Mitzi} & \mapsto & 1 \end{bmatrix} = \begin{bmatrix} \operatorname{Iohn} & \oplus & 0 \\ \operatorname{Mary} & \mapsto & 1 \\ \operatorname{Mitzi} & \mapsto & 1 \\ \operatorname{Mitzi} & \mapsto & 1 \\ \operatorname{Mitzi} & \operatorname{Mitzi} & \mapsto & 1 \\ \operatorname{Mitzi} & \operatorname{Mitzi} & \mapsto & 1 \\ \operatorname{Mitzi} & \operatorname{Mary} & \mapsto & 1 \end{bmatrix} = \begin{bmatrix} \operatorname{Iohn} & \oplus & \operatorname{Mary} \\ \operatorname{Mitzi} & \operatorname{Mary} & \operatorname{Mitzi} & \mapsto & 1 \\ \operatorname{Mitzi} & \operatorname{Mary} & \operatorname{Mitzi} & \mapsto & 1 \\ \operatorname{Mitzi} & \operatorname{Mary} & \operatorname{Mitzi} & \mapsto & 1 \\ \operatorname{Mitzi} & \operatorname{Mary} & \operatorname{Mitzi} & \mapsto & 1 \\ \operatorname{Mitzi} & \operatorname{Mary} & \operatorname{Mitzi} & \operatorname{Mary} & \operatorname{Mitzi} & \operatorname{Mary} \\ \operatorname{Mitzi} & \operatorname{Mary} & & \operatorname{Mary}$$

_

Recursive Truth Definition (Semantic rules):

1. $\llbracket [X \alpha] \rrbracket = \llbracket \alpha \rrbracket$, where X is a category, and α is a lexical item.

2.
$$[[V_P V_i]] = \{ x : [V_i](x) = 1 \}$$

3.
$$[[V_P V_{tr} N]] = \{ x : [V_{tr}](\langle x, [N] \rangle) = 1 \}$$

- 4. $\llbracket [S N VP] \rrbracket = 1 iff \llbracket N \rrbracket \in \llbracket VP \rrbracket$, 0 otherwise
- 5. $[[s neg S_1]] = [neg]([S_1])$
- 6. $\llbracket [S S_1 \operatorname{Conj} S_2] \rrbracket = \llbracket \operatorname{Conj} \rrbracket (< \llbracket S_1 \rrbracket, \llbracket S_2 \rrbracket >)$

Exercise: Draw a syntactic tree and derive the truth conditions of the following sentences:

- (6) Mary is not hungry. (Model as: "not Mary is hungry")
- (7) John smokes or Mary is hungry.
- (8) Mitzi purrs and Mary likes John.

3 Types, sets and functions

The system above has the disadvantage of having to specify specific interpretation rules for different lexical categories. Instead we can use a more general procedure, where we describe the meaning of natural language expressions as denoting functions.¹ This allows us to use a general rule for composition.

We will use lambda calculus.

- Basic types:
 - e for individuals, in D_e
 - *t* for truth values, in $\{0, 1\}$
- Definition: If *σ* and *τ* are types, then (*σ*, *τ*) is a type. An object of type (*σ*, *τ*) is a function which takes an argument of type *σ* and returns an object of type *τ*

Exercise: Give examples for elements of the following types:

- (9) *e*
- (10) $\langle e, t \rangle$
- (11) $\langle e, \langle e, t \rangle \rangle$
- (12) $\langle e, \langle e, \langle e, t \rangle \rangle \rangle$

We will write functions (almost exclusively) using λ notation: " λx . *<something involving* x>" takes an argument, x, and returns the *<something involving* x>.

(Variables optionally have a subscript to indicate the expected type.)

This allows us to represent more complex Common Noun Phrases, Adjective Phrases, and Verb Phrases. Examples:

- (13) $\lambda x. x$ smokes : the function that maps every individual x in D_e to 1 if x smokes, and to 0 otherwise.
- (14) $\lambda x. \lambda y. y$ likes x: the function that maps every individual x in D_e to the function that maps every individual y in D_e to 1, if 1 if y likes x, and to 0 otherwise.

Definition: Functional Application (FA)

If α has β and γ as its daughter constituents and $\llbracket \beta \rrbracket \in D_{\sigma}$ and $\llbracket \gamma \rrbracket \in D_{\langle \sigma, \tau \rangle}$, then $\llbracket \alpha \rrbracket = \llbracket \gamma \rrbracket (\llbracket \beta \rrbracket)$

¹In particular, functions that take one argument at a time, so no arguments that take pairs of arguments like we had before.

(15)
$$S_t$$

 N_e $VP_{\langle e,t \rangle}$
John smokes
 $[S] = [smokes]([John]])$ by FA
 $= [\lambda x.x \text{ smokes}] (John)$
 $= 1 \text{ if and only if John smokes}$

Exercise: Does the function: λx . λy . x likes y mean the same thing as the function in (14): $\overline{\lambda y}$. λx . x likes y?

Exercise: Write lexical entries for:

- (16) *give*
- (17) *not*
- (18) *gray*
- (19) slowly
- (20) Passive -en (that takes a by-phrase)

How does a predicate such as 'gray' combine with a predicate like 'cat'?

Definition: Predicate Modification

If α is a branching node that has β and γ as its daughter constituents and $[\![\beta]\!]$ and $[\![\gamma]\!]$ are both $\in D_{\langle e,t \rangle}$, then $[\![\alpha]\!] = \lambda x \cdot [\![\beta]\!](x) = [\![\gamma]\!](x) = 1$

Exercise: Compute the meaning of (21).